8-4 The Slope-Intercept Form of a Linear Equation

Objective: To use the slope-intercept form of a linear equation.

Vocabulary

y-intercept The y-coordinate of a point where a graph intersects the y-axis. Since the point is on the y-axis, its x-coordinate is 0.

Slope-intercept form of an equation The equation of a line in the form y = mx + b, where m is the slope and b is the y-intercept.

Parallel lines Lines in the same plane that do not intersect. Lines with the same slope and different y-intercepts are parallel.

Example 1

Find the slope and y-intercept of each line: **a.** $y = \frac{5}{2}x + 4$ **b.** $y = \frac{5}{2}x$ **c.** y = 4

Solution

Use the slope-intercept form, y = mx + b.

a.
$$y = \frac{5}{2}x + 4$$

The slope is
$$\frac{5}{2}$$
 and

b.
$$y = \frac{5}{2}x$$

$$y = \frac{5}{2}x + 0$$

$$\uparrow \qquad \qquad \uparrow$$

$$m \qquad \qquad b$$

The slope is
$$\frac{5}{2}$$
 and

$$x = 4$$

$$y = 0x + 4$$

$$\uparrow \qquad \uparrow$$

$$m \qquad b$$

The slope is 0 and the y-intercept is 4.

Find the slope and the y-intercept.

1.
$$y = x - 3$$

2.
$$y = 2x + 3$$

3.
$$y = -2$$

4.
$$y = \frac{1}{3}x + 4$$

5.
$$y = -\frac{1}{2}x$$

5.
$$y = -\frac{1}{2}x$$
6. $y = -\frac{1}{3}x - 3$
7. $y = -2x + 6$
8. $y = -4x + 8$

7.
$$y = -2x + 6$$

8.
$$y = -4x + 8$$

9.
$$y = -x + 3$$

10.
$$y=x-9$$

9.
$$y = -x + 5$$
 10. $y=x - 9$ **11.** $y = 3x - 2$ **12.** $y = 3$

12.
$$y = 3$$

Example 2

Use only the slope and y-intercept to graph $y = -\frac{2}{3}x + 4$.

Solution

- 1. Since the y-intercept is 4, plot (0, 4).
- 2. Since the slope $m = -\frac{2}{3} = \frac{-2}{3} = \frac{\text{rise}}{\text{run}}$ move 3 units to the right of (0, 4) and 2 units down to locate a second point.
- 3. Draw a line through the points.

Use only the slope and y-intercept to graph each equation. You may wish to verify your graphs on a computer or a graphing calculator.

13.
$$y = \frac{2}{3}x - 4$$

14.
$$y = \frac{3}{4}x - 3$$

15.
$$y = -\frac{1}{2}x$$

13.
$$y = \frac{2}{3}x - 4$$
 14. $y = \frac{3}{4}x - 3$ 15. $y = -\frac{1}{2}x$ 16. $y = -\frac{3}{4}x - 1$

17.
$$y = -x + 3$$
 18. $y = 2x + 1$ 19. $y = -3$

18.
$$y = 2x + 1$$

19.
$$y = -3$$

• **20.**
$$y = 5$$

The Slope-Intercept Form of a Linear Equation (continued)

Example 3

Use only the slope and y-intercept to graph 2x - 3y = 6.

Solution

$$2x - 3y = 6$$

 $-3y = -2x + 6$ Solve for y to transform the equation into the form $y = mx + b$.

$$y = \frac{2}{3}x - 2$$

- 1. Since b = -2, plot (0, -2).
- 2. Since $m = \frac{2}{3}$, move 3 units to the right and 2 units up to locate a second point.
- 3. Draw a line through the points.

Use only the slope and y-intercept to graph each equation. You may wish to verify your graphs on a computer or a graphing calculator.

21.
$$2x + y = 4$$

22.
$$3x + y = 6$$

23.
$$2x - y = -6$$
 24. $3x - y = 3$

24.
$$3x - y = 3$$

25.
$$x + 2y = -2$$

26.
$$2x - 3y = 6$$

27.
$$4x - 3y = 12$$

28.
$$x + 4y = 4$$

Example 4 Determine whether the lines with equations 4x + 5y = 20 and 4x + 5y = 10 are parallel.

Solution

Write each equation in slope-intercept form:

$$4x + 5y = 20$$

$$5y = -4x + 20$$

$$y = -\frac{4}{5}x + 4$$

$$4x + 5y = 10$$

$$5y = -4x + 10$$

$$y = -\frac{4}{5}x + 2$$

slope =
$$-\frac{4}{5}$$
 y-intercept = 4

slope =
$$-\frac{4}{5}$$
 y-intercept = 4 slope = $-\frac{4}{5}$ y-intercept = 2

Since both lines have the same slope and different y-intercepts, they are parallel.

Determine whether the lines whose equations are given are parallel.

29.
$$2x - y = 5$$

$$2x - y = 8$$

30.
$$x - 3y = 2$$

 $-2x + 6y = 12$

31.
$$2x - y = 6$$

 $2y - x = 6$

32.
$$3x - y = 2$$

 $-6x + 2y = 8$

33.
$$\frac{1}{2}x - \frac{1}{2}y = 4$$
 34. $4x + \frac{1}{4}y = 2$ $4x + 4y = 2$

$$34. \ 4x + \frac{1}{4}y = 2$$
$$4x + 4y = 2$$

Mixed Review Exercises

Find the slope of the line through each pair of given points.

1.
$$(-2, 1), (-1, 2)$$
 2. $(1, 2), (3, -2)$ **3.** $(-3, 4), (-1, -2)$ **4.** $(1, 5), (2, 8)$

Factor.

5.
$$2x^2 + 7x + 6$$

5.
$$2x^2 + 7x + 6$$
 6. $2x^2 - 4x + 2$ 7. $4y^2 - 25z^2$

7.
$$4y^2 - 25z^2$$

8.
$$m^2 - 3mn - 10n^2$$