9 Systems of Linear Equations

9-1 The Graphing Method

Objective: To use graphs to solve systems of linear equations.

Vocabulary

System of equations Two or more equations in the same variables. Also called a system of simultaneous equations.

To solve a system of equations To find all ordered pairs (x, y) that make both equations true.

Solution of a system of equations An ordered pair that satisfies both equations at the same time.

Coincide Two lines coincide if their graphs are the same. The equations are equivalent.

Example 1

Solve the system by graphing:

$$2x - y = 1$$
$$x + y = 5$$

Solution

Graph 2x - y = 1 and x + y = 5 in the same coordinate plane. The only point on *both* lines is the *intersection point* (2, 3). The only solution of *both* equations is (2, 3).

Check: You can check that (2, 3) is a solution of the system by substituting x = 2 and y = 3 in both equations.

$$2x - y = 1$$
 $x + y = 5$
 $2(2) - 3 = 1$ $2 + 3 = 5$

The system has the solution (2, 3).

Solve each system by the graphing method.

1.
$$x + y = 6$$

$$x-y=2$$

4.
$$y = x + 2$$
 $y = 2x - 1$

7.
$$2x + y = 5$$

 $x - y = 4$

10.
$$-2x + y = -1$$

 $2x + y = 7$

2.
$$x + y = 5$$

$$x - y = -3$$

5.
$$2x - y = 0$$

 $x + y = 3$

8.
$$x + 2y = 5$$

 $x - y = -1$

11.
$$y - 2x = -5$$

 $y - x = -3$

3.
$$x + y = 9$$

 $x - y = 3$

6.
$$2x + y = 1$$
 $x + y = 3$

9.
$$x - y = 4$$

 $2x + y = 2$

12.
$$2y - x = 2$$

 $y + x = 4$

9-1 The Graphing Method (continued)

Example 2

Solve the system by graphing:

$$\begin{aligned}
x - 2y &= 4 \\
x - 2y &= -2
\end{aligned}$$

Solution

When you graph the equations in the same coordinate plane, you see that the lines have the same slope but different y-intercepts. The graphs are parallel lines. Since the lines do not intersect, there is no point that represents a solution of both equations.

The system has no solution.

Example 3

Solve the system by graphing:

$$x + y = 3$$
$$2x + 2y = 6$$

Solution

When you graph the equations in the same coordinate plane, you see that the graphs coincide. The equations are equivalent. Every point on the line represents a solution of both equations.

The system has infinitely many solutions.

Solve each system by the graphing method.

13.
$$3x - y = 8$$

$$x + y = 4$$

16.
$$3x + 3y = 9$$

 $x + y = 3$

19.
$$x - y = -6$$

 $x - y = 2$

22.
$$2x - y = 7$$

 $x + 2y = 11$

14.
$$2x + 3y = 5$$

 $y = x$

17.
$$x + 2y = -4$$

 $x + 2y = 8$

20.
$$y - x = -3$$

 $y - 2x = -5$

23.
$$4x + y = -14$$

 $3x = y$

15.
$$2x - 3y = 4$$

 $2x - y = 0$

18.
$$3x + y = 6$$

 $2x - y = -1$

21.
$$2x + y = 5$$

 $2x + y = -1$

24.
$$x - y = 4$$

 $2x - 2y = 8$

Mixed Review Exercises

Simplify. Give your answers using positive exponents.

1.
$$\frac{16a^2b}{8ab^2}$$

2.
$$(a^{-2}b^3)^3$$

3.
$$\frac{15m^5n}{25m^2n^3}$$

4.
$$(x^3y^2)^{-2}$$

5.
$$x^4y^{-3}$$

6.
$$\frac{x^3y^2}{x^{-2}y}$$