11-3 Rational Square Roots

Objective: To find the square roots of numbers that have rational square roots.

Vocabulary

Square root If $a^2 = b$, then a is a square root of b. Positive numbers have two square roots that are opposites. Example: Since $5^2 = 25$, 5 is a square root of 25. Since $(-5)^2 = 25$, -5 is also a square root of 25.

Radicand The symbol written beneath a radical sign.

Principal square root The positive square root of a positive number.

Symbols

$$\sqrt{}$$
 (radical sign)

$$\sqrt{9}$$
 (the positive square root of 9)

$$-\sqrt{9}$$
 (the negative square root of 9)

$$\pm \sqrt{9}$$
 (the positive or negative square root of 9)

Properties	Examples
Product Property of Square Roots For any nonnegative real numbers a and b:	
$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}.$	$\sqrt{4\cdot 9} = \sqrt{4}\cdot \sqrt{9}$
Quotient Property of Square Roots For any nonnegative real number a and any positive real number b:	
$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}.$	$\sqrt{\frac{36}{4}} = \frac{\sqrt{36}}{\sqrt{4}}$

CAUTION Negative numbers do not have square roots in the set of real numbers. The square root of zero is zero.

Example 1 Find
$$\sqrt{256}$$
. **Solution** $\sqrt{256} = \sqrt{4 \cdot 64} = \sqrt{4} \cdot \sqrt{64} = 2 \cdot 8 = 16$

Example 2 Find
$$\sqrt{1764}$$
.

Solution
$$\sqrt{1764} = \sqrt{2^2 \cdot 3^2 \cdot 7^2}$$
 { If you cannot see any squares that divide into the radicand, begin by factoring the radicand. = $2 \cdot 3 \cdot 7$ = 42

11–3 Rational Square Roots (continued)

Find the indicated square root.

1.
$$\sqrt{49}$$

2.
$$\sqrt{81}$$

3.
$$\sqrt{144}$$

4.
$$\sqrt{196}$$

5.
$$-\sqrt{225}$$

6.
$$-\sqrt{121}$$

7.
$$\sqrt{576}$$

8.
$$\sqrt{400}$$

9.
$$\pm \sqrt{1600}$$

10.
$$\pm \sqrt{2025}$$

11.
$$\sqrt{900}$$

12.
$$\sqrt{784}$$

13.
$$\pm \sqrt{676}$$

14.
$$\pm \sqrt{529}$$

15.
$$-\sqrt{441}$$

16.
$$\sqrt{484}$$

Example 3

Find the indicated square root:

a.
$$\sqrt{\frac{25}{81}}$$

a.
$$\sqrt{\frac{25}{81}}$$
 b. $\pm \sqrt{\frac{121}{289}}$

$$\mathbf{a.} \quad \sqrt{\frac{25}{81}} \, = \, \frac{\sqrt{25}}{\sqrt{81}} \, = \, \frac{5}{9}$$

a.
$$\sqrt{\frac{25}{81}} = \frac{\sqrt{25}}{\sqrt{81}} = \frac{5}{9}$$
 b. $\pm \sqrt{\frac{121}{289}} = \pm \frac{\sqrt{121}}{\sqrt{289}} = \pm \frac{11}{17}$

Find the indicated square root.

17.
$$\sqrt{\frac{81}{400}}$$

18.
$$-\sqrt{\frac{225}{64}}$$

19.
$$\pm \sqrt{\frac{121}{36}}$$

20.
$$\sqrt{\frac{144}{625}}$$

21.
$$\pm \sqrt{\frac{484}{529}}$$

22.
$$-\sqrt{\frac{324}{361}}$$

23.
$$\sqrt{\frac{225}{484}}$$

24.
$$-\sqrt{\frac{289}{400}}$$

25.
$$\pm \sqrt{\frac{64}{2025}}$$

26.
$$\sqrt{\frac{256}{1225}}$$

27.
$$\pm \sqrt{\frac{441}{1024}}$$

28.
$$\sqrt{\frac{529}{256}}$$

29.
$$-\sqrt{\frac{169}{100}}$$

30.
$$-\sqrt{\frac{289}{729}}$$

31.
$$\sqrt{\frac{361}{2500}}$$

32.
$$\pm \sqrt{\frac{1156}{225}}$$

Example 4
$$\sqrt{0.64} = \sqrt{\frac{64}{100}} = \frac{\sqrt{64}}{\sqrt{100}} = \frac{8}{10} = 0.8$$

Find the indicated square root.

33.
$$\sqrt{0.16}$$

34.
$$\pm \sqrt{0.49}$$

35.
$$-\sqrt{1.44}$$

36.
$$\sqrt{2.56}$$

37.
$$-\sqrt{2.89}$$

38.
$$\sqrt{3.24}$$

39.
$$\pm \sqrt{4.84}$$

40.
$$\sqrt{6.25}$$

Mixed Review Exercises

Express as a fraction in simplest form.

5.
$$\frac{1}{2} \left(\frac{3}{4} - \frac{2}{3} \right)$$

6.
$$\frac{3}{4} \left(\frac{x}{2} - \frac{2x}{5} \right)$$

Factor completely.

7.
$$2n^2 - 10n - 48$$

8.
$$6(x-1) + y(x-1)$$

9.
$$9k^3 - k$$

10.
$$4w^2 - 20w + 25$$

11.
$$2x^2 + 5xy - 3y^2$$

12.
$$2 - 7ab + 3a^2b^2$$