5-9 Factoring Pattern for $ax^2 + bx + c$

Objective: To factor general quadratic trinomials with integral coefficients.

Patterns

Factoring pattern for $ax^2 + bx + c$: (px + r)(qx + s).

	,	_		
Example	1	Factor 2x ²	-3x	· 9.

Solution

- Clue 1 Because the trinomial has a negative constant term, one of r and s will be negative and the other will be positive.
- Factors of $2x^2$ Clue 2 You can list the possible factors of Factors of -9the quadratic term, $2x^2$, and the 1, -9 -1.92x, xpossible factors of the constant 3, -3term, -9. $9, -1 \mid -9, 1$

Make a chart to test the Possible factors Linear Term possibilities to see which produces (2x + 1)(x - 9)(-18 + 1)x = -17xthe correct linear term, -3x. (2x + 3)(x - 3)(-6+3)x = -3x +(2x + 9)(x - 1)(-2+9)x=7xSince (2x + 3)(x - 3) gives the (2x - 1)(x + 9)(18 - 1)x = 17xcorrect linear term, (2x - 3)(x + 3)(6-3)x=3x $2x^2 - 3x - 9 =$ (2x - 9)(x + 1)(2-9)x = -7x(2x + 3)(x - 3).

Factor $10x^2 - 11x + 3$. Example 2

Solution

Because the trinomial has a positive constant term and a negative linear term, both r and s will be negative.

Clue 2	List the factors of the quadratic term, $10x^2$, and the negative factors of the constant term, 3.	$\frac{\text{Factors of } 10x^2}{x, \ 10x}$ $2x, \ 5x$	Factors of 3 - 3, -1 -1, -3
	Test the possibilities to see which produces $-11x$. Since $(2x - 1)(5x - 3)$ gives the correct		Linear term $(-1 - 30)x = -31x$ $(-3 - 10)x = -13x$
	linear term, $10x^2 - 11x + 3 = (2x - 1)(5x - 3)$.	(2x-3)(5x-1)	(-2 - 15)x = -17x (-6 - 5)x = -11x

Factor. Check by multiplying the factors. If the polynomial is not factorable, write prime.

1.
$$2x^2 + 5x + 2$$

2.
$$2n^2 - 7n + 3$$

2.
$$2n^2 - 7n + 3$$
 3. $5y^2 - 9y - 2$ 4. $3a^2 + 7a + 2$

4.
$$3a^2 + 7a + 7a$$

5.
$$4y^2 - 5y + 1$$

6.
$$2a^2 + 11a + 5$$

6.
$$2a^2 + 11a + 5$$
 7. $5a^2 - 11a + 2$

8.
$$7y^2 - 9y + 2$$

5-9 Factoring Pattern for $ax^2 + bx + c$ (continued)

Factor. Check by multiplying the factors. If the polynomial is not factorable, write prime.

9.
$$2k^2 - 5k - 1$$

10.
$$12k^2 - 8k + 1$$

9.
$$2k^2 - 5k - 1$$
 10. $12k^2 - 8k + 1$ 11. $4x^2 + 17x - 15$ 12. $2a^2 + 7a + 5$ 13. $8y^2 + 6y - 9$ 14. $9x^2 + 3x - 2$ 15. $7k^2 - 11k - 6$ 16. $4u^2 - 8u - 5$

12.
$$2a^2 + 7a + 5$$

13.
$$8y^2 + 6y - 9$$

14.
$$9x^2 + 3x - 2$$

15.
$$7k^2 - 11k - 6$$

16.
$$4u^2 - 8u - 5$$

Example 3 Factor
$$5 - 7x - 6x^2$$
.

Solution

$$5 - 7x - 6x^2 = -6x^2 - 7x + 5$$
 Arrange the terms by decreasing degree.
 $= (-1)(6x^2 + 7x - 5)$ Factor -1 from each term.
 $= (-1)(2x - 1)(3x + 5)$ Factor the resulting trinomial.
 $= -(2x - 1)(3x + 5)$

Note: If you factor $5 - 7x - 6x^2$ directly, you will get (5 + 3x)(1 - 2x). Since (1 - 2x) = -(2x - 1), the two answers are equivalent.

Factor. Check by multiplying the factors. If the polynomial is not factorable, write prime.

17.
$$10 - 9y - 2y^2$$

18.
$$10 - x - 3x^2$$

19.
$$3 - x - 10x^2$$

20.
$$3 - 7x - 6x^2$$

21.
$$10 - u - 2u^2$$

22.
$$5 + 8x - 4x^2$$

Example 4 Factor
$$5a^2 + 2ab - 7b^2$$
.

$$5a^2 + 2ab - 7b^2 = (a)(5a)$$
 Write the factors of $5a^2$.
 $= (a - ?)(5a + ?)$ Test possibilities.
 $= (a - b)(5a + 7b)$

Note: If you write (a + ?)(5a - ?) as the second step, you will not find a combination of factors that produces the desired linear term.

Factor. Check by multiplying the factors.

23.
$$x^2 - xy - 20y^2$$

24.
$$4a^2 - 4ab - 3b^2$$

25.
$$3a^2 - 5ab - 12b^2$$

26.
$$5a^2 + 2ab - 7b^2$$
 27. $2x^2 - xy - 3y^2$

27.
$$2x^2 - xy - 3y^2$$

28.
$$8y^2 - 6yz - 9z^2$$

Mixed Review Exercises

Factor.

1.
$$x^2 - 196$$

2.
$$x^2 - 7x + 12$$

3.
$$r^2 - 5r - 36$$

4.
$$c^2 - 10c + 25$$

5.
$$9y^2 - 121x^2$$

6.
$$4a^2 - 25$$

7.
$$y^2 + 13y + 36$$

8.
$$p^2 + 14p + 49$$

9.
$$9y^2 + 12y + 4$$

10.
$$m^2 - m - 56$$

11.
$$n^2 + 13n + 36$$

12.
$$b^2 - 3b - 54$$