11-4 Irrational Square Roots

Objective: To simplify radicals and to find decimal approximations of irrational

square roots.

Vocabulary

Irrational numbers Real numbers that can't be expressed in the form $\frac{a}{h}$,

where a and b are integers. Their exact values can't be expressed as either terminating or repeating decimals.

Property

Property of Completeness Every decimal represents a real number, and every real number can be represented by a decimal.

Example 1

Simplify:

a. $\sqrt{256}$

b. $\sqrt{50}$

c. $2\sqrt{80}$

d. $\sqrt{704}$

Solution

a. $\sqrt{256} = \sqrt{4 \cdot 64}$

Factor within the radical sign.

. = $\sqrt{4} \cdot \sqrt{64}$ Use the product property of square roots.

 $= 2 \cdot 8$

Simplify.

= 16

b. $\sqrt{50} = \sqrt{25 \cdot 2}$

 $=\sqrt{25}\cdot\sqrt{2}$

 $= 5\sqrt{2}$

 $c. 2\sqrt{80} = 2\sqrt{16 \cdot 5}$

 $= 2 \cdot 4\sqrt{5}$

 $= 8\sqrt{5}$

 $\mathbf{d.}\sqrt{704} = \sqrt{64 \cdot 11}$

 $= 8\sqrt{11}$

Simplify.

1. $\sqrt{27}$

2. $\sqrt{20}$

3. $\sqrt{72}$

4. $\sqrt{32}$

5. $\sqrt{48}$

6. $\sqrt{45}$

7. $\sqrt{196}$

8. $\sqrt{80}$

9. $2\sqrt{63}$

10. $4\sqrt{98}$

11. $7\sqrt{28}$

12. $4\sqrt{40}$

13. $\sqrt{441}$

14. $\sqrt{289}$

15. $3\sqrt{50}$

16. $12\sqrt{50}$

17. $\sqrt{729}$

18. $\sqrt{432}$

19. $8\sqrt{75}$

20. $2\sqrt{90}$

21. $\sqrt{147}$

22. $\sqrt{288}$

23. $\sqrt{4225}$

24. $5\sqrt{800}$

25. $5\sqrt{1025}$

11-4 Irrational Square Roots (continued)

Example 2 Approximate $\sqrt{396}$ to the nearest hundredth. Use your calculator or the table at the back of your textbook.

Solution $\sqrt{396} = \sqrt{2^2 \cdot 3^2 \cdot 11}$ $= \sqrt{2^2} \cdot \sqrt{3^2} \cdot \sqrt{11}$ $= 6\sqrt{11}$

From the table: $\sqrt{11} \approx 3.317$ $6\sqrt{11} \approx 6(3.317) \approx 19.902$

Therefore $\sqrt{396} \approx 19.90$.

Example 3 Approximate $\sqrt{0.6}$ to the nearest hundredth. Use your calculator or the table at the back of your textbook.

Solution $\sqrt{0.6} = \frac{\sqrt{60}}{\sqrt{100}} = \frac{\sqrt{60}}{10} \approx \frac{7.746}{10} = 0.7746$

Therefore $\sqrt{0.6} \approx 0.77$.

In Exercises 26–37, use your calculator or the table at the back of the book. Approximate each square root to the nearest tenth.

26. $\sqrt{600}$

27.
$$\sqrt{200}$$

28.
$$-\sqrt{800}$$

29.
$$-\sqrt{500}$$

30.
$$-\sqrt{2700}$$

31.
$$-\sqrt{2200}$$

32.
$$\pm \sqrt{6600}$$

33.
$$\pm \sqrt{4800}$$

Approximate each square root to the nearest hundredth.

34. $\sqrt{56}$

35.
$$\sqrt{32}$$

36.
$$-\sqrt{0.7}$$

37.
$$-\sqrt{0.2}$$

Mixed Review Exercises

Find the indicated square roots.

1. $\sqrt{100}$

2.
$$-\sqrt{144}$$

3.
$$\sqrt{\frac{9}{25}}$$

4. $-\sqrt{\frac{36}{121}}$

5.
$$\sqrt{154^2}$$

6.
$$\sqrt{(\frac{2}{5})^2}$$

Simplify.

7. $(13x)^2$

8. $(2y^3z^6)^2$

9. $(x + 2y)^2$

10. $[10(a + 1)]^2$

11. $(9a^3b^7c)^2$

12. $(4z^2 + 3y^3)(4z^2 - 3y^3)$