8-9 Direct Variation

Objective: To use direct variation to solve problems.

Vocabulary

- **Direct variation** A function defined by an equation of the form y = kx, where k is a nonzero constant. For example, y = 5x.
- Constant of variation The nonzero constant k in a direct variation defined by y = kx. Also called the *constant of proportionality*.

Symbols

y = kx (y varies directly as x).

Example 1

Given that m varies directly as n and that m = 75 when n = 25, find the following:

- a. the constant of variation
- **b.** the value of m when n = 15

Solution

Let m = kn.

a. Substitute m = 75 and n = 25:

$$75 = k \cdot 25$$

$$3 = k$$

- **b.** Substitute k = 3 and n = 15:
- $m = 3 \cdot 15 = 45$

In Exercises 1-6, find the constant of variation.

- 1. y varies directly as x, and y = 18 when x = 3.
- 2. y varies directly as x, and y = 52 when x = 13.
- 3. t varies directly as s, and t = -36 when s = -4.
- **4.** h varies directly as m, and h = 368 when m = 23.
- 5. y varies directly as x, and y = 252 when x = 18.
- **6.** t varies directly as s, and t = 490 when s = 14.

Solve.

- 7. y varies directly as x, and y = 300 when x = 5. Find y when x = 15.
- 8. y varies directly as x, and y = 10 when x = 2. Find y when x = 9.
- 9. h varies directly as a, and a = 20 when h = 4. Find a when h = 3.
- 10. h varies directly as a, and a = 24 when h = 8. Find a when h = 4.
- 11. y varies directly as x, and y = 240 when x = 25. Find y when x = 40.
- 12. h varies directly as a, and a = 6 when h = 15. Find a when h = 5.

Direct Variation (continued)

Example 2 The amount of interest earned on savings is directly proportional to the amount of money saved. If \$26 interest is earned on \$325, how much interest will be earned on \$900 in the same period of time?

Solution 1

- The problem asks for the interest earned on \$900 if the interest on \$325 is \$26. Step 1
- $i_1 = 26$ $i_2 = \frac{?}{2}$ $d_1 = 325$ $d_2 = 900$ Step 2 Let i, in dollars, be the interest on d dollars.
- An equation can be written in the form $\frac{i_1}{d_1} = \frac{i_2}{d_2}$. Step 3

$$\frac{26}{325} = \frac{i_2}{900}$$

 $26(900) = 325i_2$ Step 4

$$23,400 = 325i_2$$
$$72 = i_2$$

- Step 5 The check is left for you. The interest earned on \$900 will be \$72.
- Solution 2 To solve Example 2 by the method shown in Example 1, first write the equation i = kd. Then solve for the constant of variation, k, by using the fact that i = 26when d = 325. Use the value of k to find the value of i when d = 900. You may wish to complete the problem this way.

Solve.

- 13. An employee's wages are directly proportional to the time worked. If an employee earns \$120 for 8 h, how much will the employee earn for 20 h?
- 14. A certain car used 21 gal of gasoline in 7 h. If the rate of gasoline used is constant, how much gasoline will the car use on a 6-hour trip?
- 15. The distance traveled by a bus at a constant speed varies with the length of time it travels. If a bus travels 192 mi in 4 h, how far will it travel in 9 h?
- 16. The number of words typed is directly proportional to the time spent typing. If a typist can type 325 words in 5 min, how long will it take the typist to type a 1040-word report?

Mixed Review Exercises

Multiply.

1.
$$(2x - 3)(3x - 1)$$

2.
$$(3x - 2)(x^2 + x - 3)$$
 3. $-2x(3 - 5x)$

3.
$$-2x(3 - 5x)$$

4.
$$(2x + 5)(2x - 5)$$

5.
$$(t-2)(3t+5)$$

6.
$$(5y - 3)(2y + 3)$$