Triangles

Objective: To learn some properties of triangles.

Vocabulary

Triangle A figure formed by three segments joining three points not on the same line. Each segment is a side of the triangle. Each of the three points is a vertex of the triangle. Angles of the triangle are formed by two sides and a vertex. The sum of the angles of a triangle is 180°.

Right triangle A triangle having one right angle.

- Isosceles triangle A triangle having two sides equal in length. The third side is called the base. The angles on either side of the base are called base angles and have equal measures.
- Equilateral triangle A triangle with all sides of equal length. The angles of an equilateral triangle all measure 60°.

The measures of two angles of a triangle are 26° and 64°. Find the measure of Example 1 the third angle.

Solution In
$$\triangle ABC$$
, $\angle A + \angle B + \angle C = 180^{\circ}$.

Let
$$x =$$
 the measure of the third angle.

$$\begin{array}{r}
 x + 26 + 64 &= 180 \\
 x + 90 &= 180 \\
 x &= 90
 \end{array}$$

The check is left for you.

The third angle has a measure of 90°.

The measure of two angles of a triangle are given. Find the measure of the third angle.

Example 2 Use the converse of the Pythagorean theorem to determine whether a triangle with sides 8, 15, and 17 is a right triangle.

Solution
$$a^2 + b^2 = c^2$$
 (in a right triangle)

$$8^2 + 15^2 \stackrel{?}{=} 17^2$$

64 + 225 $\stackrel{?}{=} 289$

$$289 = 289$$

$$289 = 289 \checkmark$$
 A triangle with sides 8, 15, and 17 is a right triangle.

Triangles (continued)

In Exercises 7-12, use the converse of the Pythagorean theorem to determine whether or not the triangle is a right triangle.

7.
$$\triangle ABC$$
: $AB = 16$, $BC = 12$, $AC = 20$

8.
$$\triangle DEF$$
: $EF = 29$, $FD = 21$, $DE = 20$

9.
$$\triangle GHI$$
: $GH = HI = 10$, $GI = 15$

10.
$$\triangle JKL$$
: $JK = 7$, $KL = 10$, $JL = 13$

11.
$$\triangle MNO$$
: $MN = 10$, $MO = 8$, $NO = 16$

12.
$$\triangle PQR$$
: $PQ = 16$, $QR = 34$, $PR = 30$

Example 3 If $\triangle EFG$ is a right triangle with $\angle F = 90^{\circ}$, EF = 15, and EG = 39, find FG.

Solution Draw a sketch to help you solve the problem. Note that EG is the hypotenuse.

$$EF^2 + FG^2 = EG^2$$

 $15^2 + FG^2 = 39^2$
 $225 + FG^2 = 1521$
 $FG^2 = 1296$
 $FG = 36$

- 13. If $\triangle STU$ is a right triangle with $\angle T = 90^{\circ}$, ST = 12, and SU = 15, find TU.
- 14. If $\triangle XYZ$ is a right triangle with $\angle Z = 90^{\circ}$, XZ = 24, and YZ = 10, find XY.
- 15. If $\triangle ABC$ is a right triangle with $\angle A = 90^{\circ}$, AB = 9, and AC = 40, find BC.
- 16. If $\triangle DEF$ is isosceles, DE = DF, and $\angle D = 46^{\circ}$, find $\angle E$.
- 17. If $\triangle GHI$ is isosceles, GH = GI and $\angle H = 30^{\circ}$, find $\angle G$.
- 18. If $\triangle ABC$ is a right isosceles triangle and $\angle C = 90^{\circ}$, find the measures of $\angle A$ and $\angle B$.

In Exercises 19-24, $\angle C = 90^{\circ}$ in $\triangle ABC$. Given the lengths of the other two sides, find the length of the third side in simplest radical form. Use the diagram shown below to help you.

19.
$$AC = 6$$
, $BC = 12$

20.
$$AC = 10$$
, $BC = 24$

21.
$$AC = 24$$
, $AB = 25$

22.
$$BC = 9$$
, $AC = 40$

23.
$$BC = 8$$
, $AB = 12$

24.
$$AC = 8$$
, $AB = 17$

