8–10 Inverse Variation

Objective: To use inverse variation to solve problems.

Vocabulary

Inverse variation A function defined by an equation of the form xy = k, where k is a nonzero constant. For example, xy = 6.

Hyperbola The graph of xy = k for any nonzero value of k.

Example 1

Graph the equation xy = -1.

Solution

у
1/4
$\frac{1}{2}$
1
4

x	y
1/4	-4
$\frac{1}{2}$	-2
1	-1
4	$-\frac{1}{4}$

Graph each equation if the domain and the range are both the set of real numbers. You may wish to verify your graphs on a computer or graphing calculator.

1.
$$xy = 8$$

2.
$$xy = 16$$

3.
$$xy = -4$$

4.
$$xy = -6$$

5.
$$x = \frac{4}{v}$$

6.
$$y = \frac{6}{x}$$

7.
$$\frac{x}{3} = \frac{-3}{y}$$
 8. $\frac{x}{2} = \frac{6}{y}$

8.
$$\frac{x}{2} = \frac{6}{y}$$

 (x_1, y_1) and (x_2, y_2) are ordered pairs of the same inverse variation.

Find the missing value: $x_1 = 2$, $y_1 = 28$, $x_2 = 4$, $y_2 = \frac{?}{}$

Solution

An inverse variation xy = k can also be expressed as $x_1y_1 = x_2y_2$.

$$2 \cdot 28 = 4 \cdot y_2$$
 Replace x_1 with 2, y_1 with 28, and x_2 with 4.

$$56 = 4y_2$$
 Solve the equation.

$$14 = y_2$$
, or $y_2 = 14$.

 (x_1, y_1) and (x_2, y_2) are ordered pairs of the same inverse variation. Find the missing value.

9.
$$x_1 = 6$$
, $y_1 = 5$, $x_2 = 2$, $y_2 =$?

9.
$$x_1 = 6$$
, $y_1 = 5$, $x_2 = 2$, $y_2 = \frac{?}{}$ **10.** $x_1 = 8$, $y_1 = 24$, $x_2 = \frac{?}{}$, $y_2 = 48$

11.
$$x_1 = 5$$
, $y_1 = 8$, $x_2 = 10$, $y_2 = \frac{?}{}$ **12.** $x_1 = 6$, $y_1 = \frac{?}{}$, $x_2 = 9$, $y_2 = 8$

12.
$$x_1 = 6$$
, $y_1 = ?$, $x_2 = 9$, $y_2 = 8$

13.
$$x_1 = \frac{?}{}, y_1 = 20, x_2 = 8, y_2 = 5$$
 14. $x_1 = 8, y_1 = 9, x_2 = \frac{?}{}, y_2 = 18$

14.
$$x_1 = 8$$
, $y_1 = 9$, $x_2 = ?$, $y_2 = 18$

8-10 Inverse Variation (continued)

Example 3 If a 12 g mass is 60 cm from the fulcrum of a lever, how far from the fulcrum is a 45 g mass that balances the 12 g mass?

Solution

A lever is a bar pivoted at a point called the fulcrum. If masses m_1 and m_2 are placed at distances d_1 and d_2 from the fulcrum, and the bar is balanced, then $m_1\bar{d}_1 = m_2\bar{d}_2$.

Let
$$m_1 = 12$$
, $d_1 = 60$, and $m_2 = 45$, $d_2 = ?$

Use
$$m_1 d_1 = m_2 d_2$$
.

$$12 \cdot 60 = 45 \cdot d_2.$$

$$720 = 45d_2$$

$$16 = d_2$$

The distance of the 45 g mass from the fulcrum is 16 cm.

In Exercises 15–22, refer to the lever at balance in Example 3. Find the missing value.

15.
$$m_1 = 12$$
, $m_2 = 8$, $d_1 = 45$, $d_2 = \frac{?}{}$

16.
$$m_1 = 60$$
, $m_2 = \frac{?}{}$, $d_1 = 8$, $d_2 = 12$

17.
$$m_1 = 24$$
, $m_2 = 8$, $d_1 = ?$, $d_2 = 18$
18. $m_1 = ?$, $m_2 = 40$, $d_1 = 5$, $d_2 = 7$

18.
$$m_1 = \underline{?}$$
, $m_2 = 40$, $d_1 = 5$, $d_2 = 7$

19.
$$m_1 = 12$$
, $m_2 = 9$, $d_1 = ?$, $d_2 = 40$

20.
$$m_1 = 108$$
, $m_2 = 60$, $d_1 = \underline{?}$, $d_2 = 9$

Solve.

- 21. Sarah weighs 105 lb and Wyatt weighs 140 lb. If Sarah sits 8 ft from the seesaw support, how far from the support must Wyatt sit to balance the seesaw?
- 22. Yoko weighs 120 lb and Lars weighs 180 lb. If Yoko sits 6 ft from the seesaw support, how far from the support must Lars sit to balance the seesaw?

Mixed Review Exercises

Show that the lines whose equations are given are parallel.

1.
$$x + 2y = 3$$

$$x + 2y = 5$$

3.
$$x - y = 3$$

$$y-x=3$$

$$2. \ 2x + 6y = 7$$

$$x + 3y = 1$$

4.
$$-6x + 9y = 2$$

$$2x - 3y = 6$$

Find the constant of variation.

- 5. t varies directly as s, and t = 12 when s = -3.
- **6.** y varies directly as x, and y = 8 when x = 32.
- 7. m varies directly as n, and m = 27 when n = 3.