11-2 Decimal Forms of Rational Numbers

Objective: To express rational numbers as decimals or fractions.

Vocabulary

Terminating decimal The result when a common fraction is written as a decimal by dividing the numerator by the denominator and the remainder is zero. Also called ending decimal or finite decimal. For example, $\frac{3}{8} = 0.375$.

Nonterminating decimal The result when a common fraction is written as a decimal by dividing the numerator by the denominator and a digit or a block of digits repeat endlessly as the remainder. Also called unending, infinite, repeating, or periodic decimals. For example, $\frac{7}{11} = 0.6363... = 0.\overline{63}$. Dots or an overbar are used to indicate the repeating block of digits.

xample 1	Express $\frac{5}{8}$ as a decimal.	Solution	0.625
•	· •		8) 5.000
	The division at the right shows that $\frac{5}{8}$ can be expressed as the terminating	$\frac{48}{20}$	
		<u>16</u>	
		decimal 0.625.	40
	,		40
	·		0

Example 2 Express each rational number as a decimal: **a.** $\frac{1}{6}$ **b.** $\frac{2}{11}$ **c.** $2\frac{1}{7}$

Solution If you don't reach a remainder of zero when dividing the numerator by the denominator, continue to divide until the remainders begin to repeat.

a.
$$\frac{1}{6} \rightarrow 6) \frac{0.166}{1.000}$$

$$\frac{-6}{40}$$

$$\frac{36}{40}$$

$$\frac{36}{4}$$

$$\frac{1}{6} = 0.166\ldots = 0.1\overline{6}$$

b.
$$\frac{2}{11} \rightarrow 11)2.0000$$
 $\frac{1}{11}$
 $\frac{1}{90}$
 $\frac{88}{20}$
 $\frac{11}{90}$
 $\frac{88}{20}$

$$\frac{2}{11} = 0.1818... = 0.\overline{18}$$

c.
$$2\frac{1}{7} = \frac{15}{7} \longrightarrow 7)15.000000$$

$$\frac{14}{7}$$

$$2\frac{1}{7} = 2.142857 \dots = 2.\overline{142857}$$

11-2 Decimal Forms of Rational Numbers (continued)

Express each rational number as a terminating or repeating decimal.

1. a.
$$\frac{1}{3}$$
 b. $\frac{1}{30}$

2. a.
$$\frac{5}{2}$$
 b. $\frac{5}{200}$

1. a.
$$\frac{1}{3}$$
 b. $\frac{1}{30}$ 2. a. $\frac{5}{2}$ b. $\frac{5}{200}$ 3. a. $-\frac{2}{9}$ b. $-\frac{2}{9000}$ 4. a. $-\frac{2}{5}$ b. $-\frac{2}{50}$

4. a.
$$-\frac{2}{5}$$
 b. $-\frac{2}{50}$

5.
$$\frac{13}{8}$$

6.
$$\frac{5}{12}$$

5.
$$\frac{13}{8}$$
 6. $\frac{5}{12}$ 7. $\frac{7}{27}$ 8. $-\frac{5}{18}$ 9. $3\frac{3}{20}$ 10. $2\frac{4}{11}$ 11. $-5\frac{3}{4}$ 12. $\frac{11}{27}$

$$\frac{5}{8}$$
 9.

10.
$$2\frac{4}{11}$$

11.
$$-5\frac{3}{4}$$

12.
$$\frac{11}{27}$$

Example 3

Express each terminating decimal as a fraction in simplest form.

a.
$$0.24 = \frac{24}{100} = \frac{6}{25}$$

b.
$$0.325 = \frac{325}{1000} = \frac{13}{40}$$

Example 4

Express $0.5\overline{21}$ as a fraction in simplest form.

Solution

Let N = the number $0.5\overline{21}$ and n = the number of digits in the block of repeating

Multiply N by 10^n . Since $0.5\overline{21}$ has 2 digits in the repeating block, n=2. Therefore, multiply both sides of the equation $N = 0.5\overline{21}$ by 10^2 or 100.

$$100N = 100(0.5\overline{21}).$$

Since $0.5\overline{21} = 0.52121..., 0.5\overline{21}$ can also be written as $0.521\overline{21}$.

$$100(0.5\overline{21}) = 100(0.521\overline{21}) = 52.1\overline{21}$$

$$100N = 52.1\overline{21}$$

Solve for
$$N$$
.

$$N = 0.5\overline{21}$$
$$99N = 51.6$$

$$9N = 51.6$$

3. 51.6 516

$$N = \frac{51.6}{99} = \frac{516}{990} = \frac{86}{165}$$
 So $0.5\overline{21} = \frac{86}{165}$.

Express each rational number as a fraction in simplest terms.

18.
$$0.\overline{2}$$

27.
$$-2.\overline{18}$$

Mixed Review Exercises

Find the prime factorization of each number.

Solve.

7.
$$(y + 2)(y - 3) = 0$$
 8. $(a + 2)^2 = 16$

8.
$$(a + 2)^2 = 16$$

9.
$$x^2 = -9$$

10.
$$k^3 - 25k = 0$$
 11. $|x + 2| = 6$

11.
$$|x + 2| = 6$$

12.
$$k + 3 < 12$$