10-2 Solving Inequalities

Objective: To transform inequalities in order to solve them.

Properties

- **Property of Comparison** For all real numbers a and b, one and only one of the following statements is true: a < b, a = b, a > b.
- Transitive Property of Order For all real numbers a, b, and c,
 - 1. If a < b and b < c, then a < c;
 - 2. If c > b and b > a, then c > a.
- Addition Property of Order For all real numbers a, b, and c,
 - 1. If a < b, then a + c < b + c;
 - 2. If a > b, then a + c > b + c.

Multiplication Property of Order

- For all real numbers a, b, and c, such that c > 0:
- 1. If a < b, then ac < bc;
- 2. If a > b, then ac > bc.
- For all real numbers a, b, and c, such that c < 0:
- 1. If a < b, then ac > bc;
- 2. If a > b, then ac < bc.

Vocabulary

Equivalent inequality An inequality with the same solution set as another inequality.

Transformations That Produce an Equivalent Inequality

- 1. Substituting for either side of the inequality an expression equivalent to that side.
- 2. Adding to (or subtracting from) each side of the inequality the same real number.
- 3. Multiplying (or dividing) each side of the inequality by the same positive number.
- 4. Multiplying (or dividing) each side of the inequality by the same negative number and reversing the direction of the inequality.

CAUTION Multiplying both sides of an inequality by zero does not produce an inequality; the result is the identity 0 = 0.

Example 1 Tell how to transform the first inequality into the second one.

a.
$$m - 6 > 2$$
 $m > 8$

b.
$$-6k \ge 18$$
 $k \le -3$

Solution

- a. Add 6 to each side.
- **b.** Divide each side by -6 and reverse the direction of the inequality.

Tell how to transform the first inequality into the second one.

1.
$$t + 2 < 6$$

2.
$$x - 3 > 7$$

3.
$$x + 5 < 0$$

$$x < -5$$

10-2 Solving Inequalities (continued)

Tell how to transform the first inequality into the second one.

4.
$$4p < 28$$
 $p < 7$

5.
$$2m < -12$$

 $m < -6$

5.
$$2m < -12$$
 6. $-7a < 21$ **7.** $3m < -6$

7.
$$3 < \frac{x}{5}$$

7.
$$3 < \frac{x}{5}$$
 8. $\frac{x}{-2} \le -4$ 9. $-\frac{t}{3} \ge 0$

9.
$$-\frac{t}{3} \ge 0$$

Example 2

Solve 4x - 1 < 7 + 2x and graph its solution set.

Solution

$$4x - 1 + 1 < 7 + 2x + 1$$
$$4x < 8 + 2x$$

Add 1 to each side.

$$4x < 8 + 2x$$

$$4x - 2x < 8 + 2x - 2x$$

4x - 2x < 8 + 2x - 2x Subtract 2x from each side.

$$2x < 8$$

$$2x = 8$$

$$\frac{2x}{2} < \frac{8}{2}$$

Divide each side by 2.

The solution set is {the real numbers less than 4}.

The graph is

Example 3

Solve $2(w-6) \ge 3(1-w)$ and graph its solution set.

Solution

$$2w - 12 \ge 3 - 3w$$
$$5w \ge 15$$

Use the distributive property.

 $w \ge 3$

Add 3w to each side and add 12 to each side.

Divide each side by 5.

The solution set is {the real numbers greater than or equal to 3}.

The graph is

Solve each inequality. Graph the solution set.

10.
$$x - 2 \ge 3$$

11.
$$8 < z + 2$$

12.
$$4p < 20$$

13.
$$15 \le 5w$$

14.
$$-24 > -6m$$
 15. $\frac{d}{2} > -3$ **16.** $3 - g > 0$ **17.** $2v + 1 > 9$

15.
$$\frac{d}{2} > -3$$

16.
$$3 - g > 0$$

17.
$$2v + 1 > 9$$

18.
$$6 \ge 2k - 6$$

19.
$$3 + \frac{x}{2} \le 4$$

20. 6 -
$$\frac{2}{3}c > 0$$

19.
$$3 + \frac{x}{2} \le 4$$
 20. $6 - \frac{2}{3}c > 0$ 21. $3r - 4 < 4r + 1$

22.
$$4y < 3y + 6$$

23.
$$3f - 2 < 2f + 3$$

23.
$$3f - 2 < 2f + 3$$
 24. $2r - 3 < 3r + 1$ **25.** $6 - 2b > 3 - b$

25.
$$6 - 2b > 3 - b$$

26.
$$2(x-3) \le 4$$

27.
$$6 < 3(2 - m)$$

$$28. \ 3(x+2) \le 3x+2$$

27.
$$6 < 3(2 - m)$$
 28. $3(x + 2) \le 3x + 2$ **29.** $4(k - 3) \ge 6(1 - k)$

Mixed Review Exercises

Classify each statement as true or false.

1.
$$|-2| > -(-1)$$

2.
$$|-4| \le |4|$$

3.
$$|-7| > |-8|$$

Solve.

4.
$$5f - 3 = f + 17$$

5.
$$0 = 3x + 12$$

6.
$$3y - 2(y - 1) = -4$$

7.
$$x - 2(8 - x) = -x$$

8.
$$a(a + 4) = (a - 6)(a - 5)$$
 9. $3x + 2(x - 1) = x + 22$

9.
$$3x + 2(x - 1) = x + 2x$$