10-4 Solving Combined Inequalities

Objective: To find the solution sets of combined inequalities.

Vocabulary

- Conjunction A sentence formed by joining two open sentences by the word and. For example, -1 < x and x < 4, which can also be written as -1 < x < 4.
- Solve a conjunction To find the values of the variables for which both open sentences in the conjunction are true.
- **Disjunction** A sentence formed by joining two open sentences by the word or. For example, y > 1 or y = 1.
- Solve a disjunction To find the values of the variables for which at least one of the open sentences in the disjunction is true.

Example 1 Draw the graph of each open sentence.

b.
$$x < 6$$

c. conjunction:
$$4 < x$$
 and $x < 6$

d. disjunction:
$$4 < x \text{ or } x < 6$$

Solution

Draw the graph of each open sentence.

1. -2 < t and $t \le 1$

2.
$$r > 2$$
 or $r \le -1$

3. $2 \le n$ and $n \le 6$

4. x < -1 or $x \ge 1$

Example 2

Describe the graph of each open sentence.

a. conjunction: t < 3 and $t \ge 3$ **b.** disjunction: t < 3 or $t \ge 3$.

Solution

- a. No real number can be less than 3 and also greater than or equal to 3. The solution set is the empty set. It has no graph.
- **b.** Every real number is either less than 3 or greater than or equal to 3. The solution set is {the real numbers}. Its graph is the entire number line.

Example 3

Solve the conjunction $-2 \le x - 1 < 3$ and graph its solution set.

Solution 1

Solve the conjunction:

$$-2 \le x - 1$$
 and $x - 1 < 3$
 $-2 + 1 \le x - 1 + 1$ | $x - 1 + 1 < 3 + 1$
 $-1 \le x$ and $x < 4$

The solution set is $\{-1, \text{ and all the real numbers } between -1 \text{ and } 4\}$.

10-4 Solving Combined Inequalities (continued)

Solution 2

$$-2 \le x - 1 < 3$$

 $-2 + 1 \le x - 1 + 1 < 3 + 1$ Add 1 to each part of the inequality.
 $-1 \le x < 4$

Example 4

Solve the disjunction 2x + 1 < 5 or $3x \ge x + 8$ and graph its solution set.

Solution

The solution set is {4, and the real numbers greater than 4 or less than 2}.

The graph is

Solve each open sentence. Graph the solution set, if there is one.

5.
$$-1 < a - 1 < 4$$

7.
$$-2 < -3 + d \le 1$$

9.
$$-4 \le 2a + 6 < 10$$

11.
$$-8 \le 3m + 1 < 7$$

13.
$$x - 1 < -4$$
 or $x - 1 > 5$

15.
$$2x - 1 \le -5$$
 or $2x - 1 > 5$

17.
$$-5x > 20$$
 or $10 + 5x \ge 0$

19.
$$-3m < 6$$
 and $18 + 3m < 0$

6.
$$-3 < y + 1 \le 2$$

8.
$$-4 \le 2 + r < 2$$

10.
$$-3 < 2b + 1 \le 5$$

12.
$$-4 < 3n + 5 \le 8$$

14.
$$h + 3 \le -1$$
 or $h + 3 \ge 1$

16.
$$3 + 2y < -5$$
 or $3 + 2y > 5$

18.
$$2d - 3 < -5$$
 or $5 < 2d - 3$

20.
$$-3 \le 1 - t$$
 and $1 - t < 2$

Mixed Review Exercises

Choose a variable and use the variable to write an inequality.

- 1. The finish line is at least 20 yd away.
- 3. The weight is at most 105 lb.
- 5. The cost is not more than \$75.
- 7. Ray averages at most 15 points per game.
- 2. The temperature cannot exceed 25 °C.
- 4. The flight takes at least 2 h.
- **6.** The tolerance is smaller than 1 cm.
- 8. Joy won at least 12 tennis matches.

Evaluate each expression if k = -3, m = 9, and x = 3.

9.
$$|x - k|$$

10.
$$|m-k|$$

11.
$$|x + k|$$

12.
$$|k - x|$$

13.
$$|k - m|$$

14.
$$k + m$$